Cambridge IGCSE ${ }^{\text {TM }}$

CANDIDATE NAME

CENTRE
NUMBER

PHYSICS

0625/52
Paper 5 Practical Test
October/November 2020
1 hour 15 minutes

You must answer on the question paper.
You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 40 .
- The number of marks for each question or part question is shown in brackets [].

For Examiner's Use	
1	
2	
3	
4	
Total	

This document has 12 pages. Blank pages are indicated.

1 In this experiment, you will investigate the stretching of a spring.
Carry out the following instructions, referring to Fig. 1.1.

Fig. 1.1
(a) The metre rule is clamped in position near to the spring. Do not change the position of the metre rule.
(i) Use the set square provided to take readings from the metre rule to determine the unstretched length L of the coiled part of the spring. Record the value of L.

$$
L=
$$

\qquad mm [
(ii) Draw a diagram to show clearly how you used the set square to obtain an accurate reading from the metre rule.
(b) • Suspend a load $P=0.20 \mathrm{~N}$ on the spring. Record in Table 1.1 the new length l of the spring.

- Repeat the procedure using loads $P=0.40 \mathrm{~N}, 0.60 \mathrm{~N}, 0.80 \mathrm{~N}$ and 1.00 N .

Table 1.1

P / N	l / mm
0.20	
0.40	
0.60	
0.80	
1.00	

(c) Plot a graph of l / mm (y-axis) against $P / \mathrm{N}(x$-axis). Start both axes at the origin $(0,0)$.

(d) The intercept on the y-axis of the graph is numerically equal to the length t_{0} of the spring when $P=0$. Determine the value of l_{0}. Show clearly on the graph how you obtained the necessary information.

$$
\begin{equation*}
l_{0}= \tag{2}
\end{equation*}
$$

(e) Calculate $L-l_{0}$.
[Total: 11]

2 In this experiment, you will investigate the refraction of light in a transparent block.
Carry out the following instructions, using the separate ray-trace sheet provided. Refer to Fig. 2.1.

Fig. 2.1
(a) - Place the transparent block, largest face down, on the ray-trace sheet supplied. The block should be approximately in the middle of the paper.

- Draw and label the outline of the block $A B C D$.
- Remove the block and draw the normal NL at the centre of side $\mathbf{A B}$. Continue the normal so that it passes through side CD of the block.
- Label the point \mathbf{F} where the normal NL crosses side $\mathbf{A B}$.
- Label the point \mathbf{G} where the normal NL crosses side CD.
(b) (i) - Draw the line EF at an angle $i=30^{\circ}$ to the normal as shown in Fig. 2.1.
- Place the paper on the pin board.
- Place two pins P_{1} and P_{2} on line EF at a suitable distance apart for this experiment.
- Replace the block and look from the position of the eye shown in Fig. 2.1, to observe the images of P_{1} and P_{2} through side CD of the block. Adjust your line of sight until the images of P_{1} and P_{2}^{2} appear one behind the other.
- Place two pins P_{3} and P_{4} between your eye and the block so that P_{3}, P_{4}, and the images of P_{1} and P_{2} seen through the block, appear one behind the other.
- Label the positions of P_{1}, P_{2}, P_{3} and P_{4}.
- Remove the block and the pins.
- Draw a line joining the positions of P_{3} and P_{4}. Continue the line through the outline of the block until it extends to just outside the outline of the block. Label the end of the line \mathbf{K}.
- Label the point \mathbf{H} where the line meets side CD.
- Label the point \mathbf{J} where the line meets the normal $\mathbf{N L}$.
- Draw the line FH.
(ii) Measure and record the length a of the line GH.

$$
\begin{equation*}
a= \tag{1}
\end{equation*}
$$

(iii) Measure and record the length b of the line $\mathbf{F H}$.

$$
\begin{equation*}
b= \tag{1}
\end{equation*}
$$

(c) Measure and record the acute angle θ between the line NL and the line JK. An acute angle is less than 90°.

$$
\theta=
$$

\qquad
(d) State one precaution that you took in order to produce an accurate ray-trace.
\qquad
\qquad
(e) A student suggests that i should be equal to θ within the limits of experimental accuracy. In this experiment, $i=30^{\circ}$. Suggest a range of values for θ that match this suggestion for your experiment.
range
(f) A student plans to test the suggestion that, in this experiment, $i=\theta$ for all possible values of i. Explain briefly how you would test the suggestion.
\qquad
\qquad
\qquad
\qquad
Tie your ray-trace sheet into this Question Booklet between pages 6 and 7.
[Total: 11]

3 In this experiment, you will investigate the resistance of samples of resistance wire.
Carry out the following instructions, referring to Fig. 3.1.
The circuit shown in Fig. 3.1 has been provided for you.

Fig. 3.1
Table 3.1 shows how the samples of wire are connected into the circuit.
Table 3.1

section	resistance wire
$B C$	one 30 cm piece
$C D$	two 30 cm pieces
DE	three 30 cm pieces

(a) (i) • Switch on.

- Measure the current I in the circuit.

$$
\begin{equation*}
I= \tag{1}
\end{equation*}
$$

(ii) Connect the voltmeter across section $B C$ of the resistance wire.

Measure and record the potential difference (p.d.) V_{1} across section $B C$. Switch off.

$$
\begin{equation*}
V_{1}= \tag{1}
\end{equation*}
$$

Calculate the resistance R_{1} of section BC using the equation $R_{1}=\frac{V_{1}}{I}$.
Give your answer to a suitable number of significant figures for this experiment and include the unit.

$$
\begin{equation*}
R_{1}= \tag{1}
\end{equation*}
$$

(iii) Disconnect the voltmeter and its leads from section BC. Connect the voltmeter across section CD. Switch on.

Measure and record the potential difference (p.d.) V_{2} across section CD. Switch off.

$$
V_{2}=
$$

\qquad
Calculate the resistance R_{2} of section CD using the equation $R_{2}=\frac{V_{2}}{I}$. Give your answer to a suitable number of significant figures for this experiment and include the unit.

$$
\begin{equation*}
R_{2}= \tag{1}
\end{equation*}
$$

(iv) Disconnect the voltmeter and its leads from section CD. Connect the voltmeter across section DE. Switch on.

Measure and record the potential difference (p.d.) V_{3} across section DE. Switch off.

$$
V_{3}=
$$

\qquad
Calculate the resistance R_{3} of section DE using the equation $R_{3}=\frac{V_{3}}{I}$. Give your answer to a suitable number of significant figures for this experiment and include the unit.

$$
R_{3}=
$$

\qquad
(b) (i) The sections $B C, C D$ and $D E$ are all the same length and made of the same metal.

Tick the box to show your conclusion from the results.

The resistance of a section increases as the number of wires increases

The resistance of a section decreases as the number of wires increases
\square The resistance of a section is independent of the number of wires.
(ii) Justify your conclusion in (b)(i) by reference to your results.
\qquad
\qquad
(c) Explain how you would change this experiment to investigate the relationship between the length of a sample of wire and its resistance.
\qquad
\qquad
\qquad
\qquad

4 A student investigates the length of time taken for ice cubes to melt when they are placed in water. She uses beakers of water at different temperatures to investigate how the initial temperature of the water affects the time taken for the ice cubes to melt.

Plan an experiment to investigate how the initial temperature of the water affects the time taken for the ice cubes to melt. You are not required to carry out this experiment.

The following apparatus is available:
thermometer
supply of ice cubes
$250 \mathrm{~cm}^{3}$ beakers
supply of cold water
In your plan, you should:

- write a list of additional apparatus to use
- explain how to carry out the investigation
- state the key variables to keep constant
- draw a table, or tables, with column headings, to show how to display the readings (you are not required to enter any readings in the table)
- explain how to use the readings to reach a conclusion.
\qquad

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

